Does WASP-47 e have friends?

Occurrence Rate of Inner Companions to Hot Jupiters with *TESS* FFI Data

Presenter: Lizhou Sha (<u>slz@mit.edu</u>) Chelsea X. Huang, Andrew M. Vanderburg

> 31 July 2019 TESS Science Conference I

In this talk...

- Uniform BLS Search for Hot Jupiter inner companions in *TESS*, *Kepler*, and *K2* data
- A new upper limit on their occurrence rate

Why study hot Jupiter inner companions?

Hot Jupiter Formation (Dawson & Johnson 2018)

Only hot Jupiters formed in situ can have inner companions.

Two known hot Jupiter companions

WASP-47e

KOI-909.02 (Kepler-370)

Why study HJs with TESS?

Ground-based observations do not have the precision to detect companions.

WASP-18b observed by WASP (Hellier et al. 2009)

WASP-18b observed by TESS (Shporer et al. 2019)

Only TESS can detect small planets near HJs

- Ground observations
- Insufficient precision
- Gaps due to daytime, weather
- Kepler
- Low HJ yield
 - 60 confirmed
 - 37 candidates

TESS

- High precision photometry
- Observes "continuously"
- > 85% sky coverage
- In Sectors 1-8:
 - 61 newly confirmed or known
 - 137 candidates

In this work...

Select a list of TESS, Kepler, and K2 hot Jupiters

Uniform BLS search for inner companion

Vet TCEs manually

Calculate refined occurrence rate upper limit

How we select hot Jupiters

Parameter	Criterion
Period	< 10 days
Planet radius	\in [6, 25] R_{\oplus}
Impact parameter	< 0.9
Star brightness (<i>TESS</i> HJs only)	< 11 th TESS magnitude

MIT Quick Look Pipeline FFI light curve

Mask planet signal with ephemeris

Mask planet signal with ephemeris

Detrend using K2 Spline (Vanderburg & Johnson 2014)

BLS using VARTOOLS (Hartman & Barkos 2016)

No new HJ inner companions found (... yet)

Calculating occurrence rate is equivalent to the unfair coin toss problem.

An unfair coin is tossed N times and lands on heads *m* times. What is the true probability *p* of the coin landing on heads?

Completeness: finding the number of trials

For each HJ star, randomly generate inner companions of various radii and periods

Transit? (b < 0.9)

Detection? (SNR > 9)

The proportion of "successful" planets contribute to the total number of trials

Completeness tally

	TESS	Kepler	K2	Total
Confirmed or Known Planet	61	60	35	156
Planet Candidates*	137	37‡	N/A	174‡
Total stars	198	95	35	328
Adjusted total ⁺	40.82	70.23	27.82	138.87

- * Assumes false positive rate of 30%
- ⁺ Excludes targets with no known Gaia stellar mass or radius
- [‡] Includes KOI-2093, a system with 3 hot Jupiter candidates

Hot Jupiter inner companions are uncommon

	# found	# of trials	Occurrence rate
TESS	0	40.82	< 6.9% *
Kepler	1	70.23	2.3+2.2% +
K2	1	27.82	5.6+5.1% +
Total	2	138.87	$1.9^{+1.4}_{-0.9}\%$ †

* 95% credible interval † 16th, 50th, 84th percentiles

Low occurrence rate of inner companions tells us that the vast majority of HJs are formed *ex situ*.

Hot Jupiter Formation (Dawson & Johnson 2018)

Thank you! Questions?

Occurrence rate: the math

An unfair coin is tossed N times and lands on heads m times. What is the probability that the true probability of the coin landing on heads is p?

$$\mathcal{P}(m, N \mid p) = \binom{N}{m} p^m (1-p)^{N-m}$$
$$\mathcal{P}(p \mid m, N) = \frac{\mathcal{P}(p) \mathcal{P}(m, N \mid p)}{\int_0^1 \mathcal{P}(t) \mathcal{P}(m, N \mid t) dt}$$
$$p(m, N) = \frac{p^m (1-p)^{N-m}}{\mathcal{B}(m+1, N-m+1)} = \frac{p^m (1-p)^{N-m}}{\int_0^1 t^m (1-t)^{N-m} dt}$$

Completeness: SNR calculation

$$SNR = \frac{1}{\sigma} \left(\frac{R_p}{R_\star}\right)^2 \sqrt{\frac{\text{baseline}}{\text{period}}} \sqrt{\frac{\text{transit duration}}{\text{exposure time}}}$$

 σ = light curve white noise baseline = exposure time × num of frames

References

- Cañas, C. I., Wang, S., Mahadevan, S., et al. 2019, ApJ, 870, L17
- Dawson, R. I., & Johnson, J. A. 2018, ARA&A, 56, 175 Hartman, J. D., & Bakos, G. Á. 2016, Astronomy and Computing, 17, 1
- Hellier, C., Anderson, D. R., Cameron, A. C., et al. 2009, Nature, 460, 1098

Shporer, A., Wong, I., Huang, C. X., et al. 2019, AJ, 157, 178 Vanderburg, A., & Johnson, J. A. 2014, PASP, 126, 948